
AD-A267 633

ARMY RESEARCH LABORATORY

Sensitive Detection of Gas-Phase
Nitro-Containing Energetic Materials

Employing 226-nm Radiation

Rosario C. Sausa
George W. Lemire

Josef B. Simeonsson

ARL-TR-157 July 1993

DTIC
ELECTEF
AUG 0 91993S A

"MPP•OM1 ".i P•UMC RMlMASE DW- DU71ON IS UNL•IMrE.

93-18209



NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information
Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army
position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute
indorsement of any commercial product.



REPOT DOUMETATIN PAE J Form Approved
REPO T DO UME TATIN PA E I 0M8 No. 0704-0188

aio reoomnq ~.ou n' -or CflCti Of cie onf -'crma4on % .1-t *.- r O.1. - ?% sOre rc.iarnq t~e t-'n toe reew.rc~q i,stiuctio'n¶. searcmI-q ea,8uq data wre
gahi no a'dnta-ngn the data neeced. and co"Olet'ng ad~- .. q nzhe't~'OnOt ":'Mat'Ohl nn ý. n ,cf l Treadrdng tI MIS Dudef ej, Ma~te of 4fnv Dth ne spc~t Oft"-%~

(olleclito Of MtOr'natiOn, n~Ctuai~c s.uqeit~on% tot ~edu~cing -",, O,,rel. I NinqWOn -ieiaQ~af.j'% Se-ceS. [).IetTOfare Of ,formaj,on operation% and Reports. 1215 ceflfson
OavnstighwaV. Sute 1204 Afrington. JA 22202 4302 and to t-' )f . antqe"'t ind Budget, Ploerworn Reduction P'0,C~t(0704-Ol88). WashO'nqton. 3C 20503

1. AGENCY USE ONLY (Leave blank) I2. REPORT DATE _"_3. REPORT TYPE AND DATES COVERED

I July 1993 Final, Feb-Sep 92
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Sensitive Detection of Gas-Phase Nitro,-Containing Energetic Materials Employing PR: IL161 102AH43
226-nm Radiation

6. AUTHOR(S)

Rosario C. Sausa, George W. Lemirea, and Josef B. Suncoosson'

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

U.S. Army Research Laboratory
ATIhl: AMSRL-WT-PC
Aberdeen Proving Ground, MD 210W5-5066

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING/ MONITORING

U.S. Army Research Laboratory AEC EOTNME

ATTN': AMSRL-OP-CI-B (~Ted: Lib" R-T-
Aberdeen Proving Ground. MD 21005-5066 ALT-5

11. SUPPLEMENTARY NOTES

INRC/AR!. Postdoctoral Associate

i~a. DISTRIBUTION /AVAILABILITY STATEMENT 121). DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

The development of a novel technique for sensing trsce vapors of -NO 2 containing compounds is reported. This
technique is based on the use of one laser operating at 226 nm to both photoftagment the target molecule and detect the
characteristic NO fragmenti fomed from a rapid predissociation of NO2, by resonaince-enhwiced multiphoton ionization
(REhPI) anMWA laser-induced fluorecence (.LIF) Via its A2ZrX 2J (0,0) baind origuL The anlytical utility of thi
technique is demonstrated on a number of compounds, including dimethyinitramine, nitromethane, nitrobenZene, TNT, and
RDX, employing molecular beamn samnpling with time-of-flight mass spectrometric analysis of the jet cooled antalyte seeded
in an atmosphere of buffer gas. With the present system, limits of detetion of 8 and 24 parts-per-billion (ppb) are obtained
for RDX and TNT, respectively, using -100 )1J/pulse of lase energy. The limits of detection of the othe compounds
studied are also presented and discussed.

14. SUBJECT TERMS 15. NUMBER OF PAGES
lasers, photofr-agment spectroscopy, laser-induced flxuoecence molecular beams, TNT, 28
RDX, ultraviolet radiation 16, PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 119. SECURITY CLASSIFICATION 20, LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSEFIED UNCLASSIFIED UNCLASSUFIED U!.
NSSN 7540 0' )80-5500 Stan'dard Form 298 (Rev 2.89)

P''fo d v AN45SI Z3t -z I.
298 102



INTEWTIONALLY LEFr BLANK.



ACKNOWLEDGMENTS

We thank Drs. S. Balusu, U.S. Army Research, Development, and Engineering Center (ARDEC), and

Pesce-Rodriguez, U.S. Army Research Laboratory (ARL), for providing us with some of the sample

compounds. Support from the ARL/NRC Postdoctoral Research Program (G. W. Lemire and

J. B. Simeonsson), the ARL Combustion Research Mission Program (R. C. Sausa), and the PIF/OSD

Capital Investment Program (R. C. Sausa) is gratefully acknowledged.

Accesion For

NTIS '~~

D, Tl i C • L,,

- I77vr 
-

A-I -

VrfCi QUALITY rNI&ECTED 3

iii~o



INTENTIONALLY LEFr BLANK.

iv



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ........................................... iii

LIST OF FIGURES ............................................... vii

1. INTRODUCTION ................................................ 1

2. EXPERIMENTAL ................................................ 3

3. RESULTS AND DISCUSSION ........................................ 6

4. SUMMARY AND CONCLUSION .................................... 16

5. REFERENCES .................................................. 17

DISTRIBUTION LIST ............................................... 19



INTENTIONALLY LEFT BLANK.

vi



LIST OF FIGURES

Figure Page

1. Schematic of the experimental apparatus ................................ 4

2. Structural formulas and names of nitrocompounds used in study ............... 7

3. Potential energy diagram of NO2 and NO showing the multiphoton scheme
employed for the REMPI and LIF detection of the NO photofragment
at266 nm .................................................. 9

4. Time-of-flight REMPI spectrum of NO generated from DMNA. The sample
was introduced into the analysis chamber in molecular beam using Ar
as the carrier gas and the mixture irradiated with approximately
100 pJ of 226-nm radiation ...................................... 10

5. REMPI excitation spectrum of NO in the region of 226 rum. The NO was
generated from a molecular beam of DMNA .......................... 11

6. Concentration dependence of the REMPI NO ion signal obtained from a molecular
beam of DMNA. The solid line is a least-squares fit of the data (o) with 95%
confidence (...). The slope yields a value of 1.34 ± 0.04 mV/ppm (2SD) ...... 12

vii



INTENTIONALLY LEFI' BLANK.

viii



I. INTRODUCTION

The development of laser-based, analytical sensors for the rapid detection and monitoring of trace

atmospheric vapors in real-time has been of great interest in recent years (Zhu et al. 1990; Feinberg 1992;

Syage. Pollard, and Cohen 1988; Papenbrock and Stuhl 1991). Environmental issues pertaining to

pollution prevention and compliance have been important driving forces behind this development. Another

important related issue deals with the detection of trace atmospheric vapors of energetic materials such

as explosives and propellants. This is not surprising given the potential civilian and military applications

for these developing tecinologies in aviation security, as well as anti-terrorist and demilitarization actions.

Ultraviolet-visible (UV-VIS) spectroscopic techniques can at times provide very specific and sensitive

methods of detection for many atomic and molecular systems. However, larger molec :Ies are, in general,

more difficult to detect spectroscopically in the UV-VIS spectral region due to the lack of distinguishing

structure or absence of any features in ti.:ir absorption or emission spectra. One approach to

circumventing this lack of specificity in the UV-VIS spectral region has been to combine spectroscopic

and mass spectrometric techniques. A common approach involves the ionization of the target molecule

for mass spectrometric detection by a multiphoton process usually involving a single resonance. In

general, this method of ionization can result in a soft ionization process with a minimum amount of

fragmentation. (See Zhu et al. 1990 and references therein for a partial list of representative studies.)

However, soft ionization is frequently difficult to achieve for large, fragile molecules which tend to

predissociate when irradiated with UV radiation. In order to prevent or minimize the fragmentation of

these fragile molecules, unique conditions must be employed. In a recent study of nitro-aromatic

compounds (Zhu et al. 1990), the ,aser ionization process was performed under atmospheric conditions

in a buffer gas and the resulting ions were injected into a mass spectrometer. These experiments

demonstrated that the fragmentation process could be strongly moderated but not completely quenched.

An alternate approach to detecting large, fragile molecules is based on the use of UV laser radiation

to photodissociate the parent molecules into characteristic fragments (see Dagdigian et al. 1989; Long,

Sausa, and Miziolek 1985; Sausa, Miziolek, and Long 1986; Sausa, Alfano, and Miziolek 1987; Wehry

et al. 1987; Schendel, Hohmann, and Wehry 1987; McQuaid et al. 1991; Moss, Trentelman, and Houston

1992; Rodgers, Asai, and Davis 1980 for a partial list of representative studies). The photofragments

typically include di- and tri-atomics, as well as atoms, which generally have structured, readily identifiable
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transitions in the UV-VIS spectral region. These fragments may be detected either by their prompt

emission (if electr aically excited during the photolysis), by laser-induced fluorescence (LI-), or by

resonance-enhanced multiphoton ionization (REEMPI).

Characteristic of many propellants and explosives is the presence of one or more -NO 2 functional

groups bonded to either a carbon or nitrogen atom. This functional group is weakly bound to the main

skeletal portion of the molecule by approximat,.Ay 40-50 kcal/mol, depeniing on the molecule, and is

responsible for the weak and structureless absorption feature observed in the UV near 230 nm (McQuaid

and Sausa 1991; Smit 1991). A perusal of the literature reveals that the UV laser photodissociation of

energetic molecules, such as RDX (Capellos, Papagiannakopoulos, and Liang 1989) and model compounds

(McQuaid et al. 1991; Moss, Trentelman, and Houston 1992; Mialocq and Stephenson 1986), under

collision-free conditions, results in the production of NO2 in the initial step in the photolysis. Two

common laser-based spectroscopic methods of detecting NO2 are by LIF and from its prompt emission

(McQuaid et al. 1991; Capellos, Papagiannakopoulos, and Liang 1989; Mialocq and Stephenson 1986).

However, both of these methods are very inefficient since the absorbed radiation is radiated over a large

spectral region, visible to near infrared. The radiative -ifetime for Ptese transitions is also very large,

typically -50-120 ps (Donnelly and Kaufman 1978), and is indicative of a weak osciliator strength.

Moreover, predissociation to NO + 0 predominates over fluorescence at wavelengths less than 400 nm.

The NO fragment is better suited for detection since it is readily formed from the predissociation

(Morrison and Grant 1982; Morrison, Rockney, and Grant 1981) of NO2 and its radiative lifetime

(McKendrick, Fotakis, and Donovan 1982) (-200 ns) is significantly shorter than the NO2 states excited

in the visible region. The NO fragment can be detected with a high degree of sensitivity and selectivity

by (1 + 1) REMPI and/or LIF via its A2 t+-X 21- transition near 226 nm. Thus, one laser tuned to 226 nm

can be used for both parent photofragmentation through its structureless UV absorption feature and

fragment detection.

The laser photodissociation/fragment detection technique is most effective when coupled with pulsed

molecular beam (MB) sampling and time-of-flight (TOF) mass spectrometric analysis. A TOF mass

spect-ometer of modest design and optimization can detect a packet of ions of up to 500 AMU in less than

100 ps with resolution (m/Am) greater than 500, while pulsed molecular beam sampling can greatly

improve the selectivity over ambient sampling and the sensitivity over CW sampling. The molecules in

the beam are colder than those at ambient conditions since they are subject to a supersonic expansion.
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Thus, they are produced in a few distinct ro /ibrational states, and, as a result, their absorption spectrum

is considerably less congested, although the NO fragment is certainly no longer colder. Spectral

interference from other molecular systems is therefore minimized, if not eliminated. The application of

a pulsed nozzle also greatly reduces the total gas throughput entering the analysis chamber while still

maintaining a high density of the sample.

In this report, we present a novel photofragmentation/fragment detection technique for the sensitive

detection of nitro compound vapors. A laser tuned to 226 nm is used for both the photolysis of target

molecule and subsequent detection of the NO fragment by REMPI and/or LIF via its A2 r-X 2 1 transition.

The analytical utility is demonstrated using trace energetic materials and model compounds in a MB/TOF

apparatus. Limits of detection for various compounds such as NO2, dimethyl nitramine (DMNA),

nitromethane, nitrobenzene, trinitrotoluene (TNT), and 1,3,5-trinitrohexahydro 1,3,5-triazine (RDX) are

reported and discussed.

2. EXPERIMENTAL

A schematic diagram of the ',B apparatus equipped for laser spectroscopy and TOF mass

spectrometry is depicted in Figure 1. The apparatus has been constructed for both LIF and REMPI

studies. The body of the apparatus consists of two main chambers. The first chamber consists of an 8-in

tee with smaller ports added for laser excitation and fluorescence collection. This chamber is pumped out

through the bottom of the tee by a 1,000 L/s turbo molecular pump (Leybold-Heraeus, TurboVac 1000).

To the left of the tee is a pulsed supersonic valve (R. M. Jordan Co., PSV) modified so that it can be

translated the length of the chamber and can be positioned for either LIF or REMPI experiments. An 8-in

four-way cross serving as the second chamber is mounted to the right of the tee. These two chambers are

differentially pumped and are separated by a skimmer with a 3-mm orifice (Beam Dynamics, Inc.,

Model 2). Mounted on the top of the cross chamber is a 1-m commercial TOF mass spectrometer

(R. M. Jordan Co.) with reflectron.

The TOF mass spectrometer distinguishes ions of different masses by their arrival times to the

detector located at the end of the flight tube. Although the time of arrival of the ions depends on the sum

of the transit times through various regions of the mass spectrometer, it is proportional to the square root

of the mass-to-charge ratio of each ion (Wiley and McLaren 1955; Karataev, Mamyrin, and Shmikk
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1972). Therefore, the time of arrival, ti, of mass, m1 , is related to the time of arrival, t2, of mass, M2 ,

by the equation,

mi 4 (1)

The determination of any mass, M2 , may be made with an accurate measurement of t1 for a known mass,

m1 . In this study, NO was used for the calibration of the mass spectra. For a typical set of operating

conditions, an acceleration voltage of approximately 2,000 V (1 eV = 1.60 x 10-12 g-cm 2/s2) and a flight

length of 2 m, a complete mass spectrum up to a mass of 500 AMU (1 AMU = 1.67 x 10-24 g) could be

recorded in approximately 72 ps.

Samples of nitromethane (Aldrich), nitrobenzene and trinitrotoluene (Eastman-Kodak), and DMNA

and RDX (ARDEC) were selected for this study. For safety precautions, samples of TNT and RDX were

handled in aliquots of less than 10 mg in a static and shock-free environment. All the samples were used

without further purification. The samples were introduced into the analysis chamber either in an effusive

flow, so that the gas in the sampled volume was replenished at a rate sufficient to avoid accumulation of

photolysis products, or in a pulsed MB. All reported data is from the latter, where the vapors of the

analytes were seeded in an atmospheric pressure of air (Potomac), nitrogen (Matheson), or argon (ARL)

gas, and the mixture expanded into the analysis chamber using a pulsed valve (10 Hz) with a 0.5-mm-

diameter nozzle. Although the valve has the capability of being heated to temperatures as high as 150* C,

it was operated at room temperature for all the samples studied, except RDX and TNT. In the case of

RDX and TNT, the samples were heated to approximately 1000 C during analysis. A temperature

difference of ±10° C results in an uncertainty in the vapor pressure determination which would affect the

sensitivity measurements by a factor of 2. Standard mixtures used to determine the sensitivity were

prepared by serial dilution of 0.1% NO/Ar (Matheson), 570 ppm CH3NO 2/Ar, and 131 ppm DMNA/Ar.

The NO 2 sensitivity was determined using a 6.2 ppm N0 2/air (Scott-Marrin). Sensitivity measurements

for nitrobenzene at room temperature, as well as TNT and RDX at 1000 C, were obtained by using

standard Ar mixtures containing the analytes at their respective vapor pressures (Handbook of Chemistry

and Physics 1986; Dobratz 1981).

The pulse pressure was calculated employing the following equation,
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Ppulse = P (r/R)2 (1 - cos 3 0), (2)

adapted from Syage, Pollard, and Cohen (1988). In the above equation. P is the backing pressure, r is the

radius of the nozzle, R is the radius of the skimmer orifice, and 0 is the skimmer transmission angle. This

angle is equal to the arctangent of the ratio of the radius of skimmer orifice (R) to the distance from the

skimmer to the nozzle (D). A pulse pressure of 180 mtorr was obtained when using a backing pressure

of 770 torr, a nozzle diameter of 0.5 mm, a skimmer diameter of 3.0 mm, and a skimmer to nozzle

distance of 2.0 cm.

The samples were photolyzed and the NO fragment subsequently ionized using focused (f = 250- or

500-mm lenses) UV radiation at or near 226 nm. An excimer pumped dye laser (Lumonics Hyper EX-400

and Hyper DYE-300) with a second harmonic generator (Lumonics TRAK-1000) operated at 10 Hz was

used to generate the tunable UV radiation. Pulsed energies of the order of 10-150 p3 with duration of

15-20 ns were employed for detection. The linewidth of the tunable UV radiation is approximately

0.16 cm-n (fwhm).

The LIF technique was also employed for comparison to the REMPI technique. The fluorescence

signal, whether prompt or induced, was collected 900 to the photolysis beam and focused onto the entrance

slit of a 0.25-m monochromator (McPherson, Model 218) acting as a broad-band filter (=8 nm fwhm).

The monochromator was tuned to approximately 237 run and 500 nm for the detection of NO and NO2,

respectively. Schott filters UG-1I and GG-435 were also used in place of the monochromator. The

signals were detected with a photomultiplier tube (EMI 9789QA) and directed into a gated integrator

(Stanford Research Systems). Both fluorescence and ion signals were displayed and monitored in real-

time on a 125-MHz digital oscilloscope (LeCroy 9400). A PC-AT computer was employed for data

acquisition and analysis. The NO2 prompt emission signal from DMNA was considerably less than that

obtained from the NO LIF, as expected. Thus, studies involving NO2 prompt emission from other

precursors were not pursued.

3. RESULTS AND DISCUSSION

Presented in Figure 2 are the names and structural formulas of molecules used in this study. A

cursory inspection of the table reveals that these nitro compounds, as well as other energetic materials,

6



NO 2
CH3 N

CH 3- NO2  
/N NO2

CH3  Q

Nitromethane DMNA Nitrobenzene

CH3  H

02 N NO2 2NN N NO2

0 H4 LO2N NO 2

N02 
NO2

TNT RDX

Figure 2. Structural formulas and names of nitrocompounds used in study.
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contain one or more weakly bound -NO 2 functional groups. The physical processes underlying our

approach to the detection of nitro compounds may be understood by referring to Figure 3 which shows

potential level diagrams of NO2 and NO. In our approach, the target molecule (R-NO2) is first photolyzed

to NO2, along with its corresponding companion radical (R) via the process

R-NO2  h....* R + NO 2. (3)226nm

The NO2 fragment is then detected by monitoring its predissociative product NO using (1 + 1) REMPI

or LIF employing its A2 1:+-X 2 I (0,0) band at 226 run. This mechanism is similar to that described by

Moss, Trentelman, and Houston (1992) in a recent paper on the photodissociation dynamics of

nitromethane using a two laser pump-and-probe technique. However, in the present results, the photolysis

wavelength was chosen to coincide with the maximum signal associated with the A-X (0,0) transition in

NO, and is generalized to all -NO 2 containing compounds.

Presented in Figure 4 is a typical mass spectrum obtained when photolyzing a MB of DMNA seeded

in Ar using 226-nm radiation. DMNA was studied since it is a simple analogue of cyclic nitramines such

as RDX (see Figure 1). The spectrum shown in Figure 4 is characteristic of all the compounds studied.

It reveals a prominent peak whose arrival time to the detector is measured as 23.2 ps. This time

corresponds to a mass-to-charge ratio (m/z) of 30 and is attributed to the NO+ ion. Similar results were

obtained when using air or nitrogen as the carrier gas. No such peak was observed, however, when the

laser was tuned off-resonance. The observed peak is void of any interference and is clearly a result of

a REMPI-process. To maximize the signal intensity and verify the mass spectral assignment, an excitation

spectrum was obtained by scanning the tunable UV radiation while monitoring the m/z = 30 peak. This

spectrum is shown in Figure 5. It reveals numerous rotational lines which are attributed unequivocally

to electronic transitions of the NO A2 :+-X 21" (0,0) band.

A plot of the NO REMPI signal intensity as a function of concentration of the precursor molecule,

DMNA, is shown in Figure 6. A least-squares fit of the data with 95% confidence yields a slope of

1.34:t 0.04 mV/ppm (2SD). A limit of detection of 450 ppb is obtained when using a background noise

value of 200 pV. Detection limits are defined in this study as the concentration, CL (ppb), that produces

a signal, (mV), equal to three times the standard deviation, o (mV), of the background divided by the

8
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Figure 3. Potential energy diagram of NO2 and NO showing the multiphoton scheme employed for
the REMPI and LIF detection of the NO photofragrnent at 226 rim.
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Figure 4. Time-of-flight REMPI spectrum of NO generated from DMNA. The sample was
introduced into the analysis chamber in molecular beam using Ar as the carrier gas
and the mixture irradiated with approximately 100 0J of 226-nm radiation.
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Figure 6. Concentration dependence of the REMPI NO ion signal obtained from a molecular beam
of DMNA. The solid line is a least-squares fit of the data (o) with 95% confidence (...). The
slooe yields a value of 1.34 ± 0.04 mV/ppm (2SD).
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sensitivity, S (mV/ppb), of the .,e.thod to the compound. The linearity of the plot implies that the NO

is formed in a collision-free environment, as expected in a MB, and that this technique is suitable for

quantification purposes. The dynamic range of measurements in these studies is limited to about two

orders of magnitude due to the limited accuracy of the flow meters used for dilution at low concentration

and low vapor pressures of the compounds at high concentrations. However, it is reasonable to anticipate

that the method is linear in its response all the way to the detection limit. Indeed, similar studies of NO

by REMPI methods have shown the capacity for single-ion detection in combination with a large dynamic

range of sensitivities (Miller 1986).

Presented in Table 1 are limits of detection for several compounds studied employing the

fragmentation/REMPI technique using 226-nm radiation. As seen from Table 1, detection limits have been

obtained in the ppb to ppm range. The limits of detection refer to the gas concentration of the analyte

prior to introduction into the analysis chamber. Vapor pressures of the compounds were obtained from

the Handbook of Chemistry and Physics (1986) and Dobratz (1981) and used to estimate the initial

concentrations. For I atmosphere of backing pressure, the calculated gas volume throughput of the

supersonic nozzle (per pulse) is 6.8 torr-cmn3. This corresponds to absolute detection limits of I and 3 pg

for RDX and TNT, respectively, and compares favorably with absolute detection limits reported for TNT

which are on the order of 200 pg (Huang, Kolaitis, and Lubman 1987). For nitromethane, Schendel,

Hohmann, and Wehry (1987) reported a concentration detection limit of 4.2 x 109/cm 3 by monitoring the

prompt emission resulting from approximately 30 mJ/pulse of ArF laser excitation. A detection limit of

1 ppm in this study corresponds to a concentration of approximately 6 x 109/cm 3 in the probe region of

the laser.

The limits of detection for the precursors depend on a number of factors such as the efficiency of

sample introduction, the laser pulse energy, the efficiency in the photodissociative pathways leading to the

formation of NO in its X21l (v" = 0) vibronic state, and the voltage settings of the ion optics and detector.

Although the experimental system used for these studies was optimized with respect to these factors in

order to obtain the maximum sensitivity possible, the current design of the experimental system could be

improved for performing trace analysis. Significant improvements in the sensitivity can be expected with

higher laser energies and with a supersonic valve/sampling device whose design increases the sample

throughput into the photolysis region. The ability to operate the valve at a higher repetition rate (>50 Hz)

and at elevated temperatures in order to eliminate condensation of the precursor, would also be desirable.

13
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Table 1. Limits of Detection for Various Nitrocompounds Studied Using the Technique of Laser
Photofragmentation/NO Fragment Detection by REMPI-TOF

Compound Limit of Detection
(ppb)

NO 8

NO2  240

CH3NO2  1,000

450
DMNA

(2.000)a

RDX 8

TNT 24

Nitrobenzene 2,400

aLimit of detection obtained by laser-induced
fluorescence of NO via its Ar_-X2H (0.0)
transition.

A supersonic nozzle meeting some of these criteria has been designed and demonstrated by Imasaka,

Okamura, and Ishibashi (1986) as part of an ionization detector apparatus for gas chromatography.

In the present studies, the experimental conditions were identical for all of the compounds. Thus,

any differences shown in Table I are indicative of different absorption cross sections that the target

molecules have at 226 ran and the photodissociation efficiency. It is clear from Table 1, that RDX, TNT,

and NO 2 are particularly efficient in generating REMPI signals. In the case of NO2, this was not too

surprising since Morrison and Grant (1982) and Morrison, Rockney, and Grant (1981) observed that by

far the most prominent ion fragment generated by the multiphoton excitation of NO2 at wavelengths in

the region from 425-455 run was the NO'. Their data suggest that the course of excitation in this system

is dominated by predissociation into NO(2fl) + O(1D) at the level of the second photon within the B (2B2)

state. They contend that this high-energy dissociation pathway becomes important soon after this channel

becomes energetically accessible. With 226-nm excitation, this pathway is, in fact, available by a single

photon absorption.

14



As noted earlier, the measured REMPI signals depend on several factors. One compound, DMNA,

was chosen to investigate the dependence of the signal on the laser pulse energy. The dependence of ion

signal intensity an laser energy was determined using the equation,

S = C(122)", (4)

where S is the ion signal intensity, I226 is the laser beam fluence, C is a system-dependent constant, and

n the number of photons required to produce the NO' signal. The value of n was determined from the

slope of a log-log plot of the variables in Equation 4. A priori, one might expect the value of n to be as

high as four, two photons required to generate NO in its X2n state and two photons to ionize it (see

Figure 3). However, the slope of the plot yields a value of n = 1.62 ± .01 (2SD), indicating that the

formation of the ion requires at least two photons. This near quadratic dependence suggests that one or

more of the intermediate photochemical steps necessary to generate NO" from R-N0 2 is sarurated. It also

suggests that a significant enhancement in the signal can be achieved at higher laser intensities.

The proposed laser photodissociation/fragment detection technique is intended to identify nitro

compounds as a class or grvup by detecting the presence of the specific NO fragment, not the parent

molecule. One advantage of this technique is its high degree of selectivity for NO since it combines the

REMPI method with TOF mass spectrometry. The overall selectivity of induced ionization methods is

a multiplicative combination of the selectivity achieved by the laser excitation process(es) and the

selectivity achieved by the mass spectral device (Letokhov 1987; Lubman 1987a, 1987T).

As shown in Figure 4, a high degree of selectivity is obtained by the REMPI method. When the laser

excitation wavelength is tuned to a strong NO transition, the ionization of NO occurs virtually at the

exclusion of any other species. The selectivity for the NO fragment is further enhanccd by the use of a

TOF mass spectrometer, which prevents detection of any spectral ionization interferences, except those

which are also isobaric.

For the purposes of comparing the meLhods of REMPI and LIF photofragment detection, the NO

fragment was monitored by LIF via its A2 Z'-X 2f" (0,0) band following the photolysis of DMNA with

226 nm radiation. As shown in Table 1, the limit of detection was estimated to be 2 ppm, a factor of

approximately 4, worse than that obtained with the REMPI technique. This difference in sensitivity results

primarily from a high background inherent in this LIF measurement. The selectivity can also be compared
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for the two methods, since they share a common wavelength of excitation at 226 rim. In this study, the

selectivity of the LIF measurement is lower due to the relatively larger bandwidth of the monochromator

and interference filter used, and is not necessarily characteristic of the LIF technique. The large bandwidth

is required, however, in order to collect the broadband fluorescence emission of NO and maintain a

sufficient level of sensitivity.

4. SUMMARY AND CONCLUSION

A novel technique for the detection of trace -NO 2 c,-taining compounds has been developed for the

purpose of detecting energetic materials such as propellants and explosives. It employs one laser operating

at 226 rum and is based on the photofragmentation of the target molecule with subsequent detection of NO

by REMPI and/or LIF via its A2E'+-X 2H (0,0) band origin. The analytical utility has been demonstrated

on a number of compounds, including NO2, DMNA, TNT, and RDX using a MB/TOF apparatus.

Detection limits in the ppb were achieved for RDX and TNT with extremely low laser energies,

-100 pJ/pulse. Lower limits cof detection are, however, projected by employing an improved system

design and higher laser energies.
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